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Abstract—CSI feedback is an important problem of massive
multiple-input multiple-output (MIMO) technology because the
feedback overhead is proportional to the number of sub-channels
and the number of antennas, both of which scale with the size
of the massive MIMO system.Deep learning-based CSI feedback
methods have been widely adopted recently owing to their supe-
rior performance. Despite the success, current approaches have
not fully exploited the relationship between the characteristics of
CSI data and the deep learning framework.

In this paper, we propose a jigsaw puzzles aided training strat-
egy (JPTS) to enhance the deep learning-based massive MIMO
CSI feedback approaches by maximizing mutual information
between the original CSI and the compressed CSI. We apply
JPTS on top of existing state-of-the-art methods. Experimental
results show that by adopting this training strategy, the accuracy
can be boosted by 12.07% and 7.01% on average in indoor
and outdoor environments, respectively. The proposed method
is ready to adopt to any existing deep learning frameworks of
massive MIMO CSI feedback. Codes of JPTS are available on
GitHub for use1.

Index Terms—Massive MIMO, FDD, CSI feedback, Deep
Learning, Jigsaw Puzzles, Data Augmentation

I. INTRODUCTION

THe massive multiple-input multiple-output (MIMO) is
one of the key technologies for next generation commu-

nication systems, e.g., 5G and above. Unlike traditional cell-
based communication paradigms, the massive MIMO makes
better use of spatial diversity and serves users in a cell-
free way. A massive MIMO system typically is equipped
with a large number of antennas at the base station (BS),
which aims to make full use of spatial diversity by conducting
beamforming to concentrate signal energy to a specific user
equipment (UE).

BS requires the downlink channel state information (CSI) to
conduct beamforming. Especially for modern cellular systems
that work on frequency division duplexing (FDD) mode, the
UE may have to explicitly feed back the downlink CSI to the
BS due to the lack of channel reciprocity. As the overhead
of CSI feedback grows quadratically with the number of
transmitting antennas, CSI compression is needed before the
feedback to reduce the overhead. Therefore, how to feedback
CSI efficiently and accurately becomes one most important
problem for massive MIMO [1].

1https://github.com/SIJIEJI/JPTS

Fig. 1: The Difference between recognition task and compres-
sion task. With the increased compression ratio, a recognition
task aims to keep the most distinguishable features of the
original data while the compression task aims to keep as
complete (but approximated) information as possible.

Traditional compressive sensing (CS) based CSI feedback
methods rely on specific assumption and require iterative
reconstruction of CSI, which makes it hard to adapt to fast-
changing channels in real life. Ever since the first DL-based
method CSINet [2] was proposed, a series of subsequent
works [3]–[6] appear because of the superior performance
brought by deep learning. Generally, DL-based methods utilize
the auto-encoder framework [7], where the encoder learns to
compress the original CSI at the UE side and the decoder
learns to reconstruct the original CSI at the BS side. The auto-
encoder is trained in unsupervised manner without the need
for labeled data and only requires a single run upon deploy-
ment for continuous CSI reconstruction, which overcomes the
computation inefficiency of traditional CS-based approaches.

Despite the success of DL-based CSI feedback methods,
current approaches have not fully exploited the advantages of
deep learning due to the lack of analysis of the CSI feedback
problem and the characteristics of CSI data. Current DL-
based approaches generally migrated some of the well-known
neural network building blocks, such as residual blocks [2],
transformer [6], LSTM [8] and etc., to the CSI feedback
task. Those modules are proposed mainly for the recognition
problem in computer vision or natural language processing
domain, which differs from the CSI compression task. As
Fig. 1 illustrates, the recognition task aims to capture the most
distinctive features of the original data while the compression



task should aim at preserving the information approximately
but as complete as possible.

Especially for the CSI data that is usually sparse, the
encoder tends to discard sparse parts when doing compression,
then zero-pads those parts during reconstruction. Although the
absolute value of the original CSI matrix and the reconstructed
CSI matrix are similar by doing the zero-pad operation, the
reconstruction error depends on the relative position of those
zero-padded parts. In addition, the CSI matrix carries physical
information with the delays and angles of the propagation
paths, so the relative position of sparse parts matters. As
a result, the physical information carried by CSI becomes
inaccurate when the encoder discards more parts without
the knowledge of the relative positions of them in the CSI
matrix. Therefore, improving performance of CSI feedback
task requires a mechanism that helps retain complete but
approximative information rather than discarding relatively
unimportant information and only preserving the most distin-
guishable parts. In particular, the physical information of path
delays and angles that are encoded as position information in
the CSI matrix should be considered.

To this end, we propose a jigsaw puzzles aided training
strategy (JPTS), which involves an auxiliary jigsaw puzzle-
solving task during training so the neural network is forced
to fuse the position information across different local regions
(puzzle pieces) of the CSI matrix while encoding the most
representative information so that even the model has better
knowledge about where to zero-pads when reconstruction
and preserve the holistic CSI information as complete (but
approximated) as possible. We evaluate the effectiveness of
JPTS by adopting it on top of three open sourced SOTA CSI
feedback methods and experiment with both the indoor and
outdoor CSI data. The experimental results demonstrate that
the proposed JPTS effectively improves the performance of
SOTA CSI feedback approaches. The strategy helps to improve
the overall average accuracy of CSINet, CRNet and CLNet by
25.66%, 6.98% and 3.58% for indoor scenario and 16.67%,
2.18% and 2.17% for outdoor scenario, respectively. There is
an overall accuracy lift of 14.80%, 6.32%, 10.14%, 10.09%
and 6.35% at corresponding compression ratios of 1/4, 1/8,
1/16, 1/32 and 1/64, respectively. The highest improvement
is 39.43% which is obtained from outdoor JPTS-CSINet with
1/4 compression ratio.

The main contributions are summarized as follows:
• To the best of our knowledge, JPTS is the first training

strategy proposed for massive MIMO CSI feedback.
• The proposed JPTS helps improve the performance of

DL-based CSI feedback approaches.
• JPTS is effective to different deep neural network archi-

tectures and thus can be generally applied across different
SOTA approaches for DL-based CSI feedback.

II. SYSTEM MODEL

For simplicity, a single cell massive MIMO system operat-
ing in FDD mode is considered, where the BS is equipped with
Nt antennas and the UE side has Nr antennas. Nt � Nr (Nr

equals to 1 for simplicity). The orthogonal frequency division
multiplexing (OFDM) is adopted with Nc subcarriers. The
received signal y ∈ CNc×1 can be expressed as follows:

y = Ax + z (1)

where x ∈ CNc×1 indicates the transmitted symbols and z ∈
CNc×1 is the complex additive Gaussian noise. A is a diagonal
matrix that can be expressed as diag

(
hH
i pi, · · · ,h

H
Nc

pNc

)
,

i ∈ {1, · · · , Nc}, where hi ∈ CNt×1 is the downlink channel
coefficients and pi ∈ CNt×1 represent beamforming precoding
vector for subcarrier i.

Due to the asymmetry of uplink and downlink, in order to
derive the beamforming precoding vector pi, the BS needs the
knowledge of corresponding downlink channel coefficient hi

that is fed back by the UE. The downlink channel matrix is
H = [h1 · · · hNc

]
H which contains NcNt elements. As the CSI

matirx H is complex-valued, the total number of parameters
that need to be fed back is 2NcNt, which is proportional to
the number of antennas. Since the characteristic of massive
MIMO is assembled with an extremely large antenna array,
the overhead of direct CSI feedback is unacceptable, and thus
how to better compress CSI becomes the bottleneck problem
to enable massive MIMO.

The common practice is first to obtain angular-delay domain
CSI representation H′, because the channel matrix H is often
sparse in the angular-delay domain. H′ can be obtained by
performing the 2D discrete Fourier transform (DFT) on H
such that

H′ = FcHFH
t (2)

where Fc ∈ CNc×Nc and Ft ∈ CNt×Nt are the DFT transform
matrices. Each element in H′ represents a certain path delay
with a certain angle of arrival (AoA). Since the time delay
of multi-path arrivals is within a finite time, only the first
few rows contain useful information, while the rest rows are
made up of near-zero values, and can be omitted without
much information loss. We may obtain the informative H′ as
Ha ∈ CNt×Nt . However, even after that, Ha is still too big to
feedback because Nt is large.

The DL-based solution therefore achieves affordable over-
head by assembling an encoder on the UE side for Ha com-
pression and a decoder on the BS side for Ha reconstruction.
Mathematically,

Ĥa = fD (fE (Ha,ΘE) ,ΘD) (3)

where fE and fD denote the encoding process and the de-
coding process, respectively, and ΘE and ΘD represent a
set of learned parameters of the encoder and the decoder,
respectively. The output of the encoder is the compressed CSI
that is denoted as v. The compression ratio η is defined as the
ratio of v and the encoder’s input such that:

η =
v

2NtNt
(4)



Fig. 2: Jigsaw Puzzles aided Training Strategy: The original Ha is first divided into n tiles (n = 4 as an example) with equal
size, and the 4 tiles are randomly shuffled to derive Ha, the permutation version of Ha. The auxiliary task requires the encoder
to provide the index of the permutation to solve the jigsaw puzzles correctly so that the encoder should gain the relative
position knowledge when compressing the original Ha

The goal of DL-based solutions is to find the parameter sets
of encoder and decoder with minimize the difference between
the original Ha and the reconstructed Ĥa:(

Θ̂E , Θ̂D

)
= argmin

ΘE ,ΘD

‖Ha − fD (fE (Ha,ΘE) ,ΘD)‖22 (5)

III. JIWSAW PUZZLES TRAINING STRATEGY

The compression task essentially is to maximize the mutual
information (MI) between the original input and the com-
pressed output [9], which differs from the recognition task that
focus to learn the most distinctive part of the input. The MI
between the input Ha and output v of the encoder is defined
as:

I(Ha; v) =
∑
Ha,v

p(Ha, v) log
p(Ha, v)
p(Ha)p(v)

(6)

which measures the inherent dependence of the joint distribu-
tion of Ha and v relative to the marginal distribution of Ha and
v under the assumption of independence. I(Ha; v) = 0 means
Ha and v are independent. Base on the definition, larger MI
indicates less uncertainty between Ha and v, higher amount
of information obtained of v through observing the Ha.

The current DL-based CSI compression methods use auto-
encoder structure with reconstruction loss, which in fact max-
imizes the MI in a global way [10]. Later research demon-
strates that maximizing the MI in local regions (e.g. patches
rather than the complete image) can greatly improve the
representation’s quality [11], which also explains why various
attention mechanisms [3], [5] and multi-resolution [4] blocks
are useful in CSI feedback task. Nevertheless, the attention
mechanisms only focu on the local patche/cluster with signal
path information while those sparse parts are simply ignored.
Although the value of sparse parts is negligible, the position
information of sparse parts matters because they actually help
determine the position of signal paths that carry the physical
information of path delays and angles.

Therefore, we introduce the idea of jigsaw puzzles, which
were first introduced by John Spilsbury as a pretext for
learning geography. Solving jigsaw puzzles is another way

to maximize MI in a local way with the natural benefit of
learning position information. In order to solve the puzzles
correctly, the network should have the ability to recognize the
relative positions of different parts of the original data, whose
characteristic is suitable for CSI feedback task as the positions
of CSI sub-matrices also carry physical information. Currently,
using deep learning to solve jigsaw puzzles by predicting the
location of puzzle fragments is frequently used as a self-
supervised learning pretext for representative learning [12].
We design a jigsaw puzzle-solving task as an auxiliary task in
the training phase to enforce the network to encode the relative
position even for those sparse parts, namely, Jigsaw Puzzles
aided Training Strategy for the CSI feedback task.

Concretely, the original CSI matrix Ha ∈ CNt×Nt is divided
to n equal-size tiles T followed by a random shuffle to get the
permutation index. The learning goal is to be able to get the
original version from the shuffled version. The n determine
the difficulty of the solving problem, if the number of tiles is
9, there are 9!=362,880 possible permutations. In particular,
as Fig. 2 illustrates, we use n = 4 as an example. First, the
input Ha

2 is divided into four equal-size tiles Ti ∈ R16×16,
i = 1, ..., 4, followed by a random shuffle, e.g. s = [4, 1, 2, 3],
to rearrange the position of each tile to get the permutation
version of Ha termed as Ha. Finally, Ha and Ha are paired
together to form the input of the network for training. The
auxiliary jigsaw puzzle-solving task lets the encoder recognize
the original position of each tile by giving a list of integer
index l that is the same as the actual permutation index s.
Concretely, we add an extra fully connected layer, fS , at the
end of the encoder to structure the output to be a matrix with
a fixed dimension J ∈ R4×4. The matrix further goes through
the Softmax function σ to re-scale each column of the matrix
so they lie in the range of [0,1] and sum to 1. In the end, each
column of the matrix is a vector with the probability value of
the position for each tile.

The goal of the training now turns to finding the parameter

2This is the CSI data from the dataset visualized with matlab’s ’lines’
colormap.



sets of encoder and decoder that not only minimize the
difference between the original Ha and the reconstructed Ĥa

but also minimize the error of the permutation prediction such
that:(
Θ̂E , Θ̂D, Θ̂S

)
= argmin

ΘE ,ΘD,ΘS

[α ‖Ha − fD (fE (Ha,ΘE) ,ΘD)‖22

+(1− α)
4∑

i=1

‖si − argmax(σ(J(:, i)))‖22]

(7)
in which, J = fS

(
fE
(
Ha,ΘE

)
,ΘS

)
and the argmax denotes

getting the index of the maximum element in the vector. The
α in equation 7 is a weighting parameter that controls the
difficulty of the jigsaw puzzle-solving task. If α → 0, the
training degrades to learning the 2D absolute position of the
tiles without learning their semantic content. If α → 1, the
training degrades to the original task where the encoder just
keeps more discriminative parts and simply discards those
sparse parts.

As such, in order to meet the goal of reconstructing Ha

and solving the puzzle correctly at the same time, which
requires the encoder to preserve the local region information
for recognizing each tile and its relative position within the
CSI matrix, instead of just preserving the most discriminative
parts of the entire CSI matrix. Especially for CSI data,
most part of the Ha is sparse, e.g. yellow annotated part in
Fig. 2, without the JPTS, the encoder may simply discard the
sparse part. The decoder just zero-pads the discarded sparse
region during reconstruction as the absolute value almost the
same. By adding the auxiliary jigsaw puzzle-solving task, the
sparse part may also be discarded, but the relative position
information is preserved by the encoder so that the decoder
has better knowledge of where to zero-pad those sparse parts
and as a result benefit to the entire CSI matrix. The JPTS
maximizes the MI in local regions, which is complementary
to the auto-encoder framework that maximizes the MI in a
global way. As a result, the whole MI is maximized and the
power of those deep learning building blocks is unleashed.

IV. EVALUATION

This section details the experiment setting and reports the
results of utilizing Jigsaw Puzzles aided Training Strategy with
existing open-source state-of-the-art (SOTA) DL-based CSI
feedback approaches.

A. Data and Evaluation Metric
We conduct experiments based on the most famous open-

source dataset in the massive MIMO CSI feedback domain.
The dataset is generated based on the COST 2100 channel
model [13] and is published with the first DL-based work
in this domain named CSINet [2]. The transmission antennas
in the BS side are configured as Nt = 32 uniform linear
array (ULA) and the receiving antenna Nr = 1 in the UE
side and the sub-carriers Nc = 1024. There are two types
of scenarios, indoor pico-cell scenario operating on 5.3 GHz
band and outdoor rural scenario operating on 300 MHz band,

respectively. The generated CSI matrices are converted to
angular-delay domain Ha ∈ R32×32×2 by 2D-DFT. The total
150,000 independently generated CSI are split into three parts,
i.e., 100,000 for training, 30,000 for validation, and 20,000 for
testing, respectively. The metric to evaluate the performance
of CSI reconstruction is the normalized mean square error
(NMSE) between the original Ha and the reconstructed Ĥa

such that:

NMSE = E
{
‖Ha − Ĥa‖22/‖Ha‖22

}
(8)

We evaluate the efficacy of JPTS by adding the training
strategy on top of 3 open-source SOTA DL-based methods,
CSINet, CRNet and CLNet, respectively. All models were
trained with the batch size of 200 and epoch of 1000 (the
same as the three original work) on a single NVIDIA 2080Ti
GPU.

B. Overall Performance of JPTS
We verify the proposed jigsaw puzzles aided training strat-

egy by adopting it on top of three SOTA approaches with
different compression ratios under both indoor and outdoor
scenarios. Table I reports the results. As shown in the Table,
in general, JPTS helps improve the overall average accuracy
of CSINet [2], CRNet [4] and CLNet [3] methods by 25.66%,
6.98% and 3.58% for indoor scenarios and 16.67%, 2.18%
and 2.17% for outdoor scenarios. In the indoor scenario,
SOTA approaches with the help of JPTS are improved by
16.01%, 10.32%, 14.42%, 13.04% and 6.58% on average,
corresponding to 1/4, 1/8, 1/16, 1/32 and 1/64 compression
ratio respectively. In outdoor scenario, they are improved
by 13.59%, 2.31%, 5.86% , 7.14% and 6.12% on average,
corresponding to 1/4, 1/8, 1/16, 1/32 and 1/64 compression
ratio respectively. The highest improvement is achieved with
indoor JPTS-CSINet and outdoor JPTS-CSINet respectively.
Compared to the original scheme, the performance is improved
by 39.34% and 39.43% at 1/4 compression ratio.

The three SOTA approaches are proposed successively.
The CRNet proposes multi-resolution blocks to improve the
CSINet and the CLNet proposes attention mechanisms to
improve CRNet. As a comparison, by simply adopting the
proposed jigsaw puzzles aided training strategy without chang-
ing the network structure, the JPTS-CSINet outperforms the
CRNet with all compression ratios, which validates our argu-
ment. Although multi-resolution is a way to maximize the MI
in a local way, solving jigsaw puzzles is a better alternative
to maximize the MI in terms of the CSI feedback task. The
JPTS-CRNet surpasses CLNet under most compression ratios
except for η = 1/4 indoors also validates the argument and
suggests that solving jigsaw puzzles surpass the attention
mechanism, even though the CLNet utilizes two different
attention mechanisms at the same time. At the same time,
it is worth noting that the JPTS-CSINet has been improved
much more than the JPTS-CRNet and JPTS-CLNet about 6 7
times. This is because JPTS essentially helps maximize the
MI in a local way, where CRNet uses multi-resolution blocks
and CLNet uses attention mechanisms to do so, but CSINet



η 1/4 1/8 1/16 1/32 1/64

Methods NMSE NMSE NMSE NMSE NMSE
indoor outdoor indoor outdoor indoor outdoor indoor outdoor indoor outdoor

CSINet [2] -17.36 -8.75 -12.70 -7.61 -8.65 -4.51 -6.24 -2.81 -5.84 -1.93
JPTS-CSINet -24.19 -12.20 -15.20 -7.97 -10.65 -5.22 -8.59 -3.12 -6.26 -2.17

CRNet [4] -24.10 -12.57 -15.04 -7.94 -10.52 -5.36 -8.90 -3.16 -6.23 -2.19
JPTS-CRNet -26.84 -12.72 -16.32 -8.01 -11.55 -5.41 -8.98 -3.38 -6.50 -2.21
CLNet [3] -29.16 -12.88 -15.60 -8.29 -11.15 -5.56 -8.95 -3.49 -6.34 -2.19

JPTS-CLNet -28.38 -12.90 -16.03 -8.40 -12.16 -5.61 -9.00 -3.61 -6.86 -2.30
CSIFormer [6] / / / / / / -9.23 -3.51 -6.85 -2.25

TABLE I: NMSE(dB) comparison between SOTA CSI feedback approaches and their JPTS enhanced result. / means the
performance is not reported.

(a) Indoor (b) Outdoor

Fig. 3: Training loss descending trends and validation loss
descending trends of three SOTA approach with JPTS adopted.

does not apply any techniques to achieve it, instead, it only
able to maximize the MI in a global way.

Besides, the JPTS-CSINet achieves -6.26 NMSE at the
compression ratio of 1/64, where the CSINet achieves a similar
NMSE -6.24 at the compression ratio of 1/32. Meanwhile,
the NMSE of JPTS-CSINet with 1/32 compression ratio is
better than the NMSE of CSINet with 1/16 compression ratio.
These indicate that the JPTS helps save the precious network
resources and achieve higher compression ratio with similar
accuracy.

The most recent approach, CSIFormer [6], migrates the
recent advanced transformer building blocks [14] to specif-
ically improve the CSI feedback performance at the high
compression ratios (1/32 and 1/64). Similar to the JPTS, the
transformer helps to fuse the position information, and thus
the accuracy under high compression ratios is better than
CLNet with the cost of doubling the complexity of CLNet.
As reported in Table I, by changing the training method of
CLNet, the performance of JPTS-CLNet at 1/64 compression
ratio outperforms the CSIFormer by 2.85% and 2.22% indoors
and outdoors, respectively. The JPTS-CLNet also outperforms
the CSIFormer at 1/32 compression ratio when outdoors. The
result suggests that the relative position matters, JPTS is a
more desired way to learn relative position information without
increasing the model complexity.

C. Close Look at The Training Log
Because the CSI matrix in the dataset all with the dimension

of 32 × 32, we choose n = 4 tiles to get the permutation
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Fig. 4: The NMSE(dB) of three SOTA approaches with
different α settings. The dashed line indicates original result
without adopting JPTS.

version of original CSI matrixs. The extra zero-padding oper-
ation to make the CSI matrix with the dimension of 33 ×
33 is needed if n = 9, which in fact fervor the learning
process because zero is easy to learn and reconstruct like
those sparse parts. As n = 9 is a common practice in the
representative learning domain [11] and 4! < 9! , we thus
take a close look at the training process and want to verify
if the JPTS has overfitting phenomenon. Figure 3 plots the
training losses and the correspond validation losses of three
SOTA approaches with JPTS adopted under compression ratio
η = 1/16. Figure 3a and Figure 3b correspond to indoor and
outdoor scenarios. we can clearly see that the JPTS works well
and does not have any overfitting phenomenon and it expects
to work even better if divided into 9 tiles.

D. The Impact of Hyperparameter α
Since we utilize α as a control parameter to determine the

difficulty of the puzzle solving task, we perform training with
different α to understand its impact3. Fig. 4 is the result with
1/64 compression ratio in indoor environment. The dashed
line indicates the original results of three corresponding SOTA

3Note that the results in Table I all with α = 0.5.



α
η 1/4 1/8 1/16 1/32 1/64

0.5 -28.38 -16.03 -12.16 -9.00 -6.86
0.6 -28.68 -16.07 -12.22 -9.00 -6.87
0.7 -28.91 -16.13 -12.22 -9.01 -6.87
0.8 -28.82 -16.18 -12.25 -9.03 -6.72

TABLE II: JPTS-CLNet NMSE(dB) comparison with different
α settings at different compression ratios.

1/32 Original Alternative JPTS
CSINet -6.24 -8.02 -8.59
CRNet -8.90 -8.90 -8.98
CLNet -8.95 -8.96 -9.00

TABLE III: Indoor NMSE(dB) comparison among the orig-
inal approches, when enhanced by alternative puzzle-solving
method, and enhanced by the proposed JPTS method, with
1/32 compression ratios.

approaches. Overall, we find that the impact of α is consistent
across three different deep learning frameworks. The proposed
jigsaw puzzles aided training strategy is generally helpful
when α is set to between 0.3 and 0.8.

There is not much difference when α is between 0.5 to
0.8, where JPTS-CSINet and JPTS-CRNet gain the highest
performance improvement when α = 0.8, while JPTS-CLNet
achieves the highest performance when α = 0.7. We see from
the results that JPTS is not sensitive to the selection of α, and
the range between 0.5 to 0.8 may provide performance gains
very close to the peak values. When α is too low, the original
compression task becomes puzzle-solving task, so the goal
does not align well between training and testing. On the other
hand, when α is too high, the network has to pay attention
to the extra puzzle-solving task but without enough ability to
solve it.

In addition, we also evaluate the α at different compression
ratios for a same network, JPTS-CLNet, and the results are
shown in Table II. We observe similar results, i.e., the peak
performance gain appears when α is set to 0.7 or 0.8, but it
is not very sensitive to the specific choice of α.

E. The Alternative Puzzle Solving Design
An alternative way to solve the jigsaw puzzles is directly

reconstructing the CSI from the permutation version of CSI.
In such a case, the corresponding equation 7 turns to:(

Θ̂E , Θ̂D

)
= argmin

ΘE ,ΘD

[α ‖Ha − fD (fE (Ha,ΘE) ,ΘD)‖22

+(1− α) ‖Ha − fD (fE (Ha,ΘE) ,ΘD)‖22]
(9)

We evaluate such an alternative method as well. Table III
reports the results.

We find that either solving the puzzle directly (alterna-
tive) or solving the puzzle by identifying the index of tiles
(JPTS) can assist the CSI feedback task to get performance
improvement. However, the proposed JPTS can provide a more
significant improvement.

V. CONCLUSION

This paper proposes a novel jigsaw puzzles aided training
strategy (JPTS) for DL-based massive MIMO CSI feedback
task. The JPTS aims to promote better CSI compression
by maximizing the mutual information in a local way with
the fact that the relative position information matters in CSI
matrix. The experiment results of adopting JPTS to different
SOTA approaches demonstrate the efficacy of JPTS as well as
support the argument of this paper, which is massive MIMO
CSI feedback is a compression task, other than adopting
powerful deep learning building blocks to better learn the most
distinguishable parts of the CSI matrix, to preserve the infor-
mation of entire CSI matrix as complete (but approximated)
as possible also matters.

As JPTS is a training strategy that can be generally applied
to any DL-based massive MIMO CSI feedback approaches,
we open source the code to boost the following research as
well as for reproducible.
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